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1. Motivation

The rapid development speed of silicon technol-
ogy permits to integrate more and more complex 
systems on a microchip (System on Chip). How-
ever, the productivity of design methods for such 
System on Chip develops slower. Therefore, the 
effort and the time for development, verification 
and test increases. In spite of manifold efforts 
the discrepancy between the size of the techno-
logically realizable systems and the design effort 
of such systems (the so-called Design Gap) 
becomes larger. For the solution of these prob-
lems, the consequent use of reusable compo-
nents, so-called Intellectual Property (IP) 
modules, is considered to be essential. In order 
to be able to use IP in as many target systems 
as possible, they must be designed for flexibility 
and must be easily adaptable. 

Interface based design is a methodology that 
should help designing IP to be flexible and to 
minimize the adaptation effort.

2. Interface based design

Interface based design is a design methodology 
that orthogonalizes functionality and communi-
cation of a digital system, aiming at the separate, 
independent exploration of the corresponding 
design spaces. An interface based design meth-
odology using a formal language called SVE is 
described in this poster.

3. Interface based design 
using SVE

The methodology described in this poster is 
based on a formal mixed-multi-level specification 
of a communication protocol. The formalism 
used for protocol specification has been realized 
as an extension to the system description lan-
guage SystemC, called SVE. This ensures that 
protocol specifications become an integral part 
of the system description and can be simulated 
and verified directly in the system context.  
The name SVE is a reference to SuperVISE, 
ICL’s design methodology that first used the con-
cept of interfaces. To formalize the concepts of 
this design methodology ICL has developed an 
extension to VHDL, called VHDL+. SVE now 
combines the advantages of the interface model-
ing concepts of VHDL+, the high simulation 
speed and HW/SW-domain unifying language 
approach of C++ based system modeling and 
the user extensibility of SystemC. 
In context to State-of-the-Art approaches this 
approach generates both transaction producer 
and consumer controllers (which both usually 
are distinct types of interacting controllers) in 
form of RTL models from one single protocol 
specification in the same run of the synthesis 
algorithm. This ensures that the behaviours of 
both transaction producer and consumer con-
form to the protocol specification. In case of veri-
fication of the controller implementation the 
protocol specification also serves as a protocol 
checker during system simulation. 
 

SVE enables communication modeling in terms 
of high level message passing between behav-
iours. It introduces a new design unit to Sys-
temC, called the Interface (Figure 1). The 
interface describes communication between a 
number of behaviours at different levels of 
abstraction in terms of interface items (Figure 2). 
An interface item describes communication bet-

ween behaviours at a specific level of abstrac-
tion. As the design advances both, system func-
tionality and system communication, are to be 
implemented at lower levels of design abstrac-
tion. For this purpose interface items can be iter-
atively refined completely independent from the 
module’s functional implementations. This 
refinement is done by defining item compositions
for interface items. Item compositions describe 
how a particular item is decomposed into a set of 
lower level items and how these items are 
scheduled (executed in time). In reverse, the 
item composition describes how the item is con-
structed of lower level items. 

4. Modeling a Controller Area 
Network (CAN) Protocol in 
SVE

CAN is a serial bus system especially suited to 
interconnect smart devices to build smart sys-
tems or sub-systems. The properties of a CAN 
are:

• multi-master capabilities

• broadcast messaging

• sophisticated error detecting mechanism and 
retransmission of faulty messages 

The CAN protocol is an international standard 
defined in the ISO 11898. The protocol defines 
messages which are distinguished by using a 
message identifier. Such message identifier 
defines not only the content but also the priority 
of the message. 

Figure 3 shows the topology of the SVE CAN 
model. The CAN protocol is captured in a SVE 
interface called „CAN_interface“. Each CAN 
device is an instance of the same SystemC mod-
ule class. Such a device contains two instances 
of a „CAN_interface“, called interface signal. 
Each interface instance is dedicated to produce 
transactions (send interface) or to consume 
transactions (receive interface).  
As communication medium a SystemC sc_signal 
is used, so the send interface has to decompose 
transactions down to signal level and the receive 
interface will compose transactions based on the 
values of this sc_signal.

Frame Formats

In CAN Spec 2.0 Part A and B four frame for-
mats are defined: data frame, remote frame, 
error frame and overload frame. 

According to these frame formats interface items 
are declared. Following the composition and 
scheduling defined in CAN Spec 2.0 leads to a 
specification of the complete CAN protocol in 

SVE. Figure 4 shows as an example the declara-
tion of the remote frame item (extended format). 

During simulation a Finite State Machine (FSM) 
generated by the SVE kernel attempts to com-
pose items based on the received values accord-
ing to the item compositions. If a value does not 
match the expected value (some bits are of a 
fixed value in accordance to CAN Spec 2.0) a 
protocol error is detected, i.e. an implicit frame 
check is performed. Figure 5 shows how de-/
composition is defined over the complete proto-
col hierarchy.

 

 
 

Detecting and signalling errors

For error detection the CAN protocol defines five 
mechanisms: CRC, frame check, acknowledge-
ment, monitoring and bit stuffing.  
As part of the system communication these 
mechanisms should be implemented inside the 
interface: 
As previously mentioned, frame check is auto-

matically done by the SVE simulation kernel dur-
ing simulation. Bit stuffing is described in the 
lowest level interface item called "Bit" and also 
automatically checked. If an error of these two 
types is detected, a protocol error message is 
generated. The corresponding receive interface 
stops matching the actual interface item immedi-
ately and will automatically start matching an 
new item.

CRC generation and check is also imple-
mented in the interface directly. However, 
because of the delayed signalling of crc errors 
defined in CAN Spec 2.0, error handling can not 
be left to the SVE simulation kernel, which would 
stop receiving the item immediately, but must be 
implemented explicit by embedding sequential 
behaviours in item compositions.

Monitoring also uses sequential behaviours: 
The receive interface needs to know about the 
value sent by the send interface to compare sent 
and received values. In case of mismatch the 
receive interface indicates an error to the send 
interface, which then stops sending the item. The 
following transmission of an error frame has to 
be induced by the CAN device itself.

The transmission of ACK can not be described 
as separate transaction in relation to the protocol 
description. Therefore ACK is sent by a process 
in the CAN device, which is triggered by the 
receive interface. However, ACK is part of data 
and remote frames and always sent by the send 
interface as ’recessive’ value, which can be over-
written by a ’dominant’ value (i.e. positive ACK) 
on the bus. In the composition both ’recessive’ 
and ’dominant’ values are accepted for ACK. 

Simulating the system

The simulation starts with the elaboration phase. 
Beside the normal SystemC elaboration, the 
executable (system model) generates FSM to 
produce and to consume transmissions for each 
interface instance. The number of states of these 
FSM depends on the complexity of the protocol 
specification: The number of states increases 
with the number of defined abstraction levels and 
the complexity of item compositions. After elabo-
ration the model runs a specified time just like 
ordinary SystemC programs. The states of inter-
face items and values of item parameters can 
easily be traced by tracing the corresponding 
interface signal. A result of tracing an interface 
signal is shown in Figure 6. 

 

5. Conclusion and Outlook

The CAN protocol was described in SVE and 
successfully simulated within a system environ-
ment. Using SVE interfaces a testbench could 
be retained along most stages of design explora-
tion. Conversions between incompatible proto-
cols can easily be described by two interfaces 
which internally exchange abstract data. 

The synthesis of interface specifications to con-
troller hardware descriptions is in preparation. In 
the near future SVE will be extended to enable 
designers to describe protocols of parallel char-
acter, of what SVE is currently not capable.
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Figure 1: Mixed multi-level communication 
modeling in SVE

Figure 2: SVE Interface Item

Parameter (Information Payload) Composition

State SVE Communication Item

BETWEENFROM TO

Direction Attributes

TAKES

phys
ic

al
C
A
N

B
us

R
ec

ei
ve

S
en

d

S
en

d

R
ec

ei
ve

Signal

Field

Frame
send
Frame

receive
Field

Send Interface Receive Interface

CAN Device CAN Device

CAN Device

Figure 3: CAN System Overview

Code-Segment

// Message Item REMOTE_FRAME_extended

// declare item parameters

// declare compositional item references

// method to get interface status

// message constructor

// message attributes

// parameter registration

// link compositional items

// message composition
// extended frame

// set variable abort_frame

// abort composition

SV_MESSAGE

get_abort_frame

SV_MESSAGE_CTOR

( REMOTE_FRAME_extended ){

SV_Param<sc_uint<18> > ext_id;
SV_Param<sc_uint<4> > data_bytes;
SV_Param<bool> ack_slot_value;
SV_Param<bool> abort_frame;

SV_MessageRef IDE_r_ref;
SV_MessageRef EXTENDED_IDENTIFIER_ref;
SV_MessageRef RTR_r_ref;
SV_MessageRef r1_ref;
SV_MessageRef CTRL_ref;
SV_MessageRef CRC_ref;
SV_MessageRef ACK_ref;
SV_MessageRef EoF_ref;

(){
abort_frame = SV_INTERFACE_CONTEXT(CAN_interface)->get_abort();

}

( REMOTE_FRAME_extended ){

SV_FROM << ;
SV_TO << ;
SV_TAKES( 8);

SV_PARAMETER(ext_id);
SV_PARAMETER(data_bytes);
SV_PARAMETER(ack_slot_value);

SV_LINK_REFERENCE( IDE_r_ref, CAN_interface );
SV_LINK_REFERENCE( EXTENDED_IDENTIFIER_ref, CAN_interface );
SV_LINK_REFERENCE( RTR_r_ref, CAN_interface );
SV_LINK_REFERENCE( r1_ref, CAN_interface );
SV_LINK_REFERENCE( CTRL_ref, CAN_interface );
SV_LINK_REFERENCE( CRC_ref, CAN_interface );
SV_LINK_REFERENCE( ACK_ref, CAN_interface );
SV_LINK_REFERENCE( EoF_ref, CAN_interface );

abort_frame = false;

SV_COMPOSITION( SV_SERIAL(IDE_r_ref(),
EXTENDED_IDENTIFIER_ref(ext_id),
RTR_r_ref(),
SV_SEQBEHAVIOUR(get_abort_frame),
SV_SELECT< >( SV_MATCH(abort_frame),

(false) <= SV_SERIAL( r1_ref(),
CTRL_ref(data_bytes),
CRC_ref(),
ACK_ref(ack_slot_value),
EoF_ref()),

(true) <= SV_NULL)
)

);
}

};

void

bool
bool

bool

"GENERIC_SEND_END"
"GENERIC_RECEIVE_END"

Figure 4: Item REMOTE_FRAME_extended

Figure 5: Protocol hierarchy
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Figure 6: Trace of an interface signal
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