
www.ip-qualifikation.de

1. Motivation

The rapid development speed of silicon technol-
ogy permits to integrate more and more complex
systems on a microchip (System on Chip). How-
ever, the productivity of design methods for such
System on Chip develops slower. Therefore, the
effort and the time for development, verification
and test increases. In spite of manifold efforts
the discrepancy between the size of the techno-
logically realizable systems and the design effort
of such systems (the so-called Design Gap)
becomes larger. For the solution of these prob-
lems, the consequent use of reusable compo-
nents, so-called Intellectual Property (IP)
modules, is considered to be essential. In order
to be able to use IP in as many target systems
as possible, they must be designed for flexibility
and must be easily adaptable.

Interface based design is a methodology that
should help designing IP to be flexible and to
minimize the adaptation effort.

2. Interface based design

Interface based design is a design methodology
that orthogonalizes functionality and communi-
cation of a digital system, aiming at the separate,
independent exploration of the corresponding
design spaces. An interface based design meth-
odology using a formal language called SVE is
described in this poster.

3. Interface based design
using SVE

The methodology described in this poster is
based on a formal mixed-multi-level specification
of a communication protocol. The formalism
used for protocol specification has been realized
as an extension to the system description lan-
guage SystemC, called SVE. This ensures that
protocol specifications become an integral part
of the system description and can be simulated
and verified directly in the system context.
The name SVE is a reference to SuperVISE,
ICL’s design methodology that first used the con-
cept of interfaces. To formalize the concepts of
this design methodology ICL has developed an
extension to VHDL, called VHDL+. SVE now
combines the advantages of the interface model-
ing concepts of VHDL+, the high simulation
speed and HW/SW-domain unifying language
approach of C++ based system modeling and
the user extensibility of SystemC.
In context to State-of-the-Art approaches this
approach generates both transaction producer
and consumer controllers (which both usually
are distinct types of interacting controllers) in
form of RTL models from one single protocol
specification in the same run of the synthesis
algorithm. This ensures that the behaviours of
both transaction producer and consumer con-
form to the protocol specification. In case of veri-
fication of the controller implementation the
protocol specification also serves as a protocol
checker during system simulation.

SVE enables communication modeling in terms
of high level message passing between behav-
iours. It introduces a new design unit to Sys-
temC, called the Interface (Figure 1). The
interface describes communication between a
number of behaviours at different levels of
abstraction in terms of interface items (Figure 2).
An interface item describes communication bet-

ween behaviours at a specific level of abstrac-
tion. As the design advances both, system func-
tionality and system communication, are to be
implemented at lower levels of design abstrac-
tion. For this purpose interface items can be iter-
atively refined completely independent from the
module’s functional implementations. This
refinement is done by defining item compositions
for interface items. Item compositions describe
how a particular item is decomposed into a set of
lower level items and how these items are
scheduled (executed in time). In reverse, the
item composition describes how the item is con-
structed of lower level items.

4. Modeling a Controller Area
Network (CAN) Protocol in
SVE

CAN is a serial bus system especially suited to
interconnect smart devices to build smart sys-
tems or sub-systems. The properties of a CAN
are:

• multi-master capabilities

• broadcast messaging

• sophisticated error detecting mechanism and
retransmission of faulty messages

The CAN protocol is an international standard
defined in the ISO 11898. The protocol defines
messages which are distinguished by using a
message identifier. Such message identifier
defines not only the content but also the priority
of the message.

Figure 3 shows the topology of the SVE CAN
model. The CAN protocol is captured in a SVE
interface called „CAN_interface“. Each CAN
device is an instance of the same SystemC mod-
ule class. Such a device contains two instances
of a „CAN_interface“, called interface signal.
Each interface instance is dedicated to produce
transactions (send interface) or to consume
transactions (receive interface).
As communication medium a SystemC sc_signal
is used, so the send interface has to decompose
transactions down to signal level and the receive
interface will compose transactions based on the
values of this sc_signal.

Frame Formats

In CAN Spec 2.0 Part A and B four frame for-
mats are defined: data frame, remote frame,
error frame and overload frame.

According to these frame formats interface items
are declared. Following the composition and
scheduling defined in CAN Spec 2.0 leads to a
specification of the complete CAN protocol in

SVE. Figure 4 shows as an example the declara-
tion of the remote frame item (extended format).

During simulation a Finite State Machine (FSM)
generated by the SVE kernel attempts to com-
pose items based on the received values accord-
ing to the item compositions. If a value does not
match the expected value (some bits are of a
fixed value in accordance to CAN Spec 2.0) a
protocol error is detected, i.e. an implicit frame
check is performed. Figure 5 shows how de-/
composition is defined over the complete proto-
col hierarchy.

Detecting and signalling errors

For error detection the CAN protocol defines five
mechanisms: CRC, frame check, acknowledge-
ment, monitoring and bit stuffing.
As part of the system communication these
mechanisms should be implemented inside the
interface:
As previously mentioned, frame check is auto-

matically done by the SVE simulation kernel dur-
ing simulation. Bit stuffing is described in the
lowest level interface item called "Bit" and also
automatically checked. If an error of these two
types is detected, a protocol error message is
generated. The corresponding receive interface
stops matching the actual interface item immedi-
ately and will automatically start matching an
new item.

CRC generation and check is also imple-
mented in the interface directly. However,
because of the delayed signalling of crc errors
defined in CAN Spec 2.0, error handling can not
be left to the SVE simulation kernel, which would
stop receiving the item immediately, but must be
implemented explicit by embedding sequential
behaviours in item compositions.

Monitoring also uses sequential behaviours:
The receive interface needs to know about the
value sent by the send interface to compare sent
and received values. In case of mismatch the
receive interface indicates an error to the send
interface, which then stops sending the item. The
following transmission of an error frame has to
be induced by the CAN device itself.

The transmission of ACK can not be described
as separate transaction in relation to the protocol
description. Therefore ACK is sent by a process
in the CAN device, which is triggered by the
receive interface. However, ACK is part of data
and remote frames and always sent by the send
interface as ’recessive’ value, which can be over-
written by a ’dominant’ value (i.e. positive ACK)
on the bus. In the composition both ’recessive’
and ’dominant’ values are accepted for ACK.

Simulating the system

The simulation starts with the elaboration phase.
Beside the normal SystemC elaboration, the
executable (system model) generates FSM to
produce and to consume transmissions for each
interface instance. The number of states of these
FSM depends on the complexity of the protocol
specification: The number of states increases
with the number of defined abstraction levels and
the complexity of item compositions. After elabo-
ration the model runs a specified time just like
ordinary SystemC programs. The states of inter-
face items and values of item parameters can
easily be traced by tracing the corresponding
interface signal. A result of tracing an interface
signal is shown in Figure 6.

5. Conclusion and Outlook

The CAN protocol was described in SVE and
successfully simulated within a system environ-
ment. Using SVE interfaces a testbench could
be retained along most stages of design explora-
tion. Conversions between incompatible proto-
cols can easily be described by two interfaces
which internally exchange abstract data.

The synthesis of interface specifications to con-
troller hardware descriptions is in preparation. In
the near future SVE will be extended to enable
designers to describe protocols of parallel char-
acter, of what SVE is currently not capable.

M1 M2 M3

FRAMETransaction Level

Message Level

RTL

Transaction Level

Message Level

RTL

Interface

Interface Abstraction Level

Module A Module B

F
u
n
c
ti
o
n
a
l A

b
s
tr

a
c
ti
o
n

L
e
v
e
l

F
u
n
c
ti
o
n
a
lA

b
s
tr

a
c
ti
o
n

L
e
v
e
l

Figure 1: Mixed multi-level communication
modeling in SVE

Figure 2: SVE Interface Item

Parameter (Information Payload) Composition

State SVE Communication Item

BETWEENFROM TO

Direction Attributes

TAKES

phys
ic

al
C
A
N

B
us

R
ec

ei
ve

S
en

d

S
en

d

R
ec

ei
ve

Signal

Field

Frame
send
Frame

receive
Field

Send Interface Receive Interface

CAN Device CAN Device

CAN Device

Figure 3: CAN System Overview

Code-Segment

// Message Item REMOTE_FRAME_extended

// declare item parameters

// declare compositional item references

// method to get interface status

// message constructor

// message attributes

// parameter registration

// link compositional items

// message composition
// extended frame

// set variable abort_frame

// abort composition

SV_MESSAGE

get_abort_frame

SV_MESSAGE_CTOR

(REMOTE_FRAME_extended){

SV_Param<sc_uint<18> > ext_id;
SV_Param<sc_uint<4> > data_bytes;
SV_Param<bool> ack_slot_value;
SV_Param<bool> abort_frame;

SV_MessageRef IDE_r_ref;
SV_MessageRef EXTENDED_IDENTIFIER_ref;
SV_MessageRef RTR_r_ref;
SV_MessageRef r1_ref;
SV_MessageRef CTRL_ref;
SV_MessageRef CRC_ref;
SV_MessageRef ACK_ref;
SV_MessageRef EoF_ref;

(){
abort_frame = SV_INTERFACE_CONTEXT(CAN_interface)->get_abort();

}

(REMOTE_FRAME_extended){

SV_FROM << ;
SV_TO << ;
SV_TAKES(8);

SV_PARAMETER(ext_id);
SV_PARAMETER(data_bytes);
SV_PARAMETER(ack_slot_value);

SV_LINK_REFERENCE(IDE_r_ref, CAN_interface);
SV_LINK_REFERENCE(EXTENDED_IDENTIFIER_ref, CAN_interface);
SV_LINK_REFERENCE(RTR_r_ref, CAN_interface);
SV_LINK_REFERENCE(r1_ref, CAN_interface);
SV_LINK_REFERENCE(CTRL_ref, CAN_interface);
SV_LINK_REFERENCE(CRC_ref, CAN_interface);
SV_LINK_REFERENCE(ACK_ref, CAN_interface);
SV_LINK_REFERENCE(EoF_ref, CAN_interface);

abort_frame = false;

SV_COMPOSITION(SV_SERIAL(IDE_r_ref(),
EXTENDED_IDENTIFIER_ref(ext_id),
RTR_r_ref(),
SV_SEQBEHAVIOUR(get_abort_frame),
SV_SELECT< >(SV_MATCH(abort_frame),

(false) <= SV_SERIAL(r1_ref(),
CTRL_ref(data_bytes),
CRC_ref(),
ACK_ref(ack_slot_value),
EoF_ref()),

(true) <= SV_NULL)
)

);
}

};

void

bool
bool

bool

"GENERIC_SEND_END"
"GENERIC_RECEIVE_END"

Figure 4: Item REMOTE_FRAME_extended

Figure 5: Protocol hierarchy

Error FrameData or Remote Frame

Data Frame Remote Frame

StandardExtended Extended StandardRTR

IDE

Error Delim.Error FlagSoF Base ID

Ext ID Ctrl Data CRC Ack EoF

Ctrl Data CRC Ack EoF

Ext ID Ctrl CRC Ack EoF

Ctrl CRC Ack EoF

CAN Frame

Bit BitRTR

IDEIDE IDEa b c d

a …..

b …..

c …..

d

Bit Bit Bit BitBit Bit Bit BitBitBitBit Bit

1. Bit ?

RTR ?

IDE ? IDE ?

Figure 5: Protocol
hierarchy

0 219 ns 438 ns 657 ns

--- DATA_OR_REMOTE_FRAME DATA_OR_REMOTE_FRAME ---

--- + BASE_I+ REMOTE_FRAME + BASE_I+ DATA_FRAME ---

--- REMOTE_FRAME_standard ---

--- DATA_FRAME_standard ---

--- CT+ CRC_ + EoF_ ---

--- CT+ DATA_8 CRC_ + EoF_ ---

--- + --- + ---

--- Bit --- Bit ---

--- ---

--- ---

--- --- ---

--- --- ---

--- D+ --- D+ ---

--- B+ --- B+ ---

--- DATA_Byte ---

--- Bit ---

$00 $08 $07 $06 $05 $04 $03 $02 $01

--- CRC_Seque+ --- CRC_Sequenz ---

--- Bit --- Bit ---

--- --- ---

--- --- ---

--- --- ---

--- Bit --- Bit ---

$000 $001

$000 $001

$0 $8

$0 $8

$0 $8

$0 $8

--- CAN_Signal_Phymap CAN_Signal_Phymap ---

Time
SystemC.CAN_interface.CAN_Protocol

SystemC.CAN_interface.DATA_OR_REMOTE_FRAME

SystemC.CAN_interface.REMOTE_FRAME

SystemC.CAN_interface.DATA_FRAME

SystemC.CAN_interface.REMOTE_FRAME_standard

SystemC.CAN_interface.DATA_FRAME_standard

SystemC.CAN_interface.SoF_

SystemC.CAN_interface.BASE_IDENTIFIER

SystemC.CAN_interface.RTR_r

SystemC.CAN_interface.RTR_d

SystemC.CAN_interface.IDE_d

SystemC.CAN_interface.r0

SystemC.CAN_interface.CTRL

SystemC.CAN_interface.DATA_LENGTH_CODE

SystemC.CAN_interface.DATA_8

SystemC.CAN_interface.DATA_Byte

SystemC.CAN_interface.DATA_Byte.data[7:0]

SystemC.CAN_interface.CRC_

SystemC.CAN_interface.CRC_Sequenz

SystemC.CAN_interface.CRC_DELIMITER

SystemC.CAN_interface.ACK

SystemC.CAN_interface.ACK_DELIMITER

SystemC.CAN_interface.EoF_

SystemC.CAN_interface.DATA_OR_REMOTE_FRAME.base_id[10:0]

SystemC.CAN_interface.BASE_IDENTIFIER.base_id[10:0]

SystemC.CAN_interface.REMOTE_FRAME.data_bytes[3:0]

SystemC.CAN_interface.REMOTE_FRAME_standard.data_bytes[3:0]

SystemC.CAN_interface.CTRL.data_bytes[3:0]

SystemC.CAN_interface.DATA_LENGTH_CODE.data_bytes[3:0]

SystemC.CAN_interface.Bit

SystemC.CAN_interface.Bit.bit_value

SystemC.CAN_interface.CAN_Signal_Phymap.bit_value

SystemC.st1.CAN_Signal_OUT

SystemC.clk

Figure 6: Trace of an interface signal

Interface based system modeling of a CAN using SVE
Denny Brem, Dietmar Müller

Professorship Circuit and Systems Design, Chemnitz University of Technology

Contact: Denny Brem
Technische Universität Chemnitz
Professur Schaltungs- und Systementwurf (413201)
09107 Chemnitz, Germany

brem@infotech.tu-chemnitz.de
http://www.infotech.tu-chemnitz.de/~sse
phone: +49 371 531 3158
fax: +49 371 531 3186

 Acknowledgements:
This work was realized in association with AMD and is part of the „IP Qualification Project
(IPQ)“ funded by the German Federal Ministry of Education and Research (Bundesministe-
rium für Bildung und Forschung) in section „Design Platforms for complex Systems and Cir-
cuits (Entwurfsplattformen für komplexe angewandte Systeme und Schaltungen der
Mikroelektronik - EkompaSS)“

