

Workload-basierte Verlässlichkeitsanalyse für eingebettete Prozessoren

Oliver Bringmann, <u>Stefan Stattelmann</u>, Björn Sander

Universität Tübingen / FZI Forschungszentrum Informatik

Outline

Embedded Software: Power & Temperature

 System-Level Simulation of Non-Functional Properties by Host-Compiled Execution

Application-Dependent Power and Temperature Simulation
 Framework

Areas of Application

Challenges: Automotive Electronics

Yesterday ...

... and today

	A8	A4	A8 new
Number of ECUs	68	65	85
Number of Busses	6	6	7
Software (Mbyte)	60	90	>230

Source: Audi

Automotive Electronics – Reducing Comfort Area

Temperatures: Dominated by Local Power Effects

"...thermal modeling at finer granularity level i.e., transistor level or logic gate level is required for more accurate estimation of local hot spots." Bansal et al., ASP-DAC 2006

hat anota tone of migramators in

Conclusion: Non-Functional Properties

- Performance
- **Energy and Power Consumption**
- Temperature and Power Densities

have to be considered and are strongly application-dependent

Frequency* (MHz)

Power † (mW/MHz)

silicon; 90nm process

† Typical case conditions

- Example: ARM7TDMI
 - Power RUN state: 1.3 mW => Power density: 3.9 W/cm²

Assuming an equal distribution is probably not accurate

- 236 MHz

- 0.18 mm²

- 0.03 mW/MHz

Temperature Map for alu4

Example: Power Simulation at Different Levels of Abstraction

• ARM7TDMI, 90 nm, 236 MHz, 0.18 mm²

Accuracy insufficient. System model disregards the number of branches in the application.

		gcd		ellip	
Functional Representation	Power Model	Simulation Factor (Simulation Time /Simulated Time)	Average Power - Error (comp. to MS+PC)	Simulation Factor	Average Fower - E
Task Graph, CDG, CFG	Average	<< 1	4.17 uW - 81 %	<< 1	4.17 uW -541 %
Instrum. Source-Code	Instruction- Dependent	0.5	5.8 uW - 31 %	0.1	0.39 uW - 66 %
Static BinaryTransl., Dynamic Binary Transl.	Data- Dependent	75	9.69 uW - 28 %	10	0.70 uW - 7 %
Netlist: ModelSim (MS) + Power Compiler (PC)	PC Internal	> 1010	7.57 uW	> 1010	0.65 uW

Data-dependent power model leads to a small error. But usually some kind of RTL simulation is necessary to calculate input stimuli of the components.

Simulation speed and appearing error are acceptable. Efficient link with information from binary level could be very promising.

SYSTEM-LEVEL SIMULATION OF NON-FUNCTIONAL PROPERTIES BY HOST-COMPILED EXECUTION

Simulation of Functional and Non-Functional Behavior – Basic Idea

Basic Idea: Source-Level Timing Instrumentation

Proposed Hybrid Approach

- Compilation into binary code
- Static execution time analysis w.r.t. architectural details
 Back-annotation of analyzed timing information into the source code
- Simulation by host-compiled execution

```
int c, int d)
{
  int res;
  res = (a + b) << c - d;
  delayn( Besms );
}

00000000 <f>:
; int f( int a, int b;
; int c,
; int c,
; {
  3 ms
```

int f(int a, int b,

Important

Compilation

- Requires accurate relation between source code and binary code
- Run-time models for branch prediction and caching have to be incorporated

Compiler Optimizations

- Structure of source code and binary code can be completely different
 - Function Inlining adds basic blocks
 - Loop Unrolling modifies execution count of basic blocks
 - ...
- Compilers don't generate accurate debug information for optimized code
 - → No 1:1 relation between source-level and binary-level basic blocks
 - → Simply annotating delay attributes for source-level timing simulation does not work

How to match structure of source code and machine instructions?

10

Structural Analysis and Code Matching

Annotation and Path Simulation Code Generation

Simulation of Functional and Non-Functional Behavior – Basic Idea

Platform Model Integration

Architectural Model

Virtual Platform

1/0

CPU

TLM-2.0 Loosely Timed Simulation

Experimental Results

- Experiments conducted for an ARM processor
- Improved simulation performance compared to high-performance ISS based on just-in-time compilation

APPLICATION-DEPENDENT POWER AND TEMPERATURE SIMULATION FRAMEWORK

Power and Power Density Characterization

Characterization: Power Distribution Models

Starting Point:

- Commercial Tool Chain
- ARM-like processor design
- Used to create accurate power measurements for processor components

Gate Average Power Consumption

Characterization: Power Distribution Models

Characterization: Power Distribution Models

Power Density Models for Temperature Analysis

Low Power Design: What can be done...

Low Power Technique	Description			
Multi-Voltage Threshold (MVTH)	Individual logic gates use transistors with low threshold voltages	Low Vth (High Speed) - Normal Vth cell - High Vth (Low Leakages)		
Clock Gating (CG)	Disable registers			
Operand Isolation (OI)	Datapath blocks are prevented from swichting (keep in pute constant) For syste	Combinational Logic m model integration 3 different classes of		
Multiple Operator Voltages (MOV)	low powe	r techniques can be identified:		
Multiple Supply Voltages (MSV) MSV	Blocks operate with dif supply voltages	"Original circuit " is changed		
Dynamic Voltage and Frequency Scaling (DVFS)	A divertical tensor and fine	Additional hardware is used		
DVFS DVFS)	Adjust voltage and fred the fly depending on the	Architectural measures		
Power Gating (PG) PG PG	Torn of supply voltage when not in use	Sleep VCC VCC VCC VCC VCD VCD VCD VCD VCD VCD		
Multi-Core (MC) MC	Distribute functionality to more than a single processor	Functionality on 2 processors => f/2, 0,7*V => power cut in half		

Incorporation of Low Power Techniques

Parameterization of the System Model

■ print trace into(), volu

MTHV

AREAS OF APPLICATION

Thermal Simulation

Triggering of RT / Gate Level Aging Models

Operating Conditions

Workload

Annotated C/C++ Source Code

Modeled Effects

- NBTI
- HCI

Aged Component Model

- gate delay
- output slope
- → aged critical path

Platform for Fast Holistic Vehicle Analysis

- Fast co-simulation to cover application and environment context
- Virtual prototype (VP) reflects timing/power/temperature behavior
- Foundation for application/environment-driven robustness analysis

Conclusion

- Non-functional properties important issue in embedded SW design
- Real-time simulation possible using source code instrumentation
 - Timing and power characteristics are annotated
 - Impact of data-dependencies and access to shared resources are solved by dynamic execution
 - Highly scalable in terms of the number of processors/processor cores
- Applicable to other non-functional properties like determination of thermal distributions and application-dependent reliability analysis
- Foundation for efficient simulation of heterogeneous HW/SW systems including sensors and actors

Thank you very much for your attention!

Questions?

Oliver Bringmann

FZI Forschungszentrum Informatik Intelligent Systems and Production Engineering (ISPE) Email: bringmann@fzi.de